Bayesian operator inference for data-driven reduced-order modeling

نویسندگان

چکیده

This work proposes a Bayesian inference method for the reduced-order modeling of time-dependent systems. Informed by structure governing equations, task learning model from data is posed as inverse problem with Gaussian prior and likelihood. The resulting posterior distribution characterizes operators defining model, hence predictions subsequently issued are endowed uncertainty. statistical moments these estimated via Monte Carlo sampling distribution. Since reduced models fast to solve, this computationally efficient. Furthermore, proposed framework provides interpretation regularization term that present in deterministic operator problem, empirical Bayes approach maximum marginal likelihood suggests selection algorithm hyperparameters. demonstrated on two examples: compressible Euler equations noise-corrupted observations, single-injector combustion process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Modeling and Inference for

A geometrically anisotropic spatial process can be viewed as being a linear transformation of an isotropic spatial process. Customary semivariogram estimation techniques often involve ad hoc selection of the linear transformation to reduce the region to isotropy and then tting a valid parametric semivariogram to the data under the transformed coordinates. We propose a Bayesian methodology which...

متن کامل

A data compression technique for PGD reduced-order modeling

This work concerns the Proper Generalized Decomposition (PGD), an a priori model reduction technique used to solve problems, eventually nonlinear, defined over the time-space domain. PGD seeks the solution of a problem in a reduced-order basis generated by a dedicated algorithm. This is the LATIN method, an iterative strategy which generates the approximations of the solution over the entire ti...

متن کامل

application of several data-driven techniques for rainfall-runoff modeling

in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...

متن کامل

Factorized Asymptotic Bayesian Inference for Mixture Modeling

This paper proposes a novel Bayesian approximation inference method for mixture modeling. Our key idea is to factorize marginal log-likelihood using a variational distribution over latent variables. An asymptotic approximation, a factorized information criterion (FIC), is obtained by applying the Laplace method to each of the factorized components. In order to evaluate FIC, we propose factorize...

متن کامل

Bayesian Nonparametric Modeling for Causal Inference

Researchers have long struggled to identify causal effects in non-experimental settings. Many recently-proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models – one for the assignment mechanism and one for the response surface. We propose a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2022

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2022.115336